
Continuous Packaging

Frédéric Lepied - FLOCK 2017

Who am I?
● work @ Red Hat in the leadership team of the OpenStack

group
● was eNovance VP of Engineering (OpenStack service

company)
● been in the Open Source world since 1995 (XFree86,

Debian, MandrakeSoft/Mandriva, OpenStack)
● involved in: X11 XInput, Wacom driver, Debian, Mandrake

Linux, rpmlint, msec, lads, eDeploy, OpenStack
● worked in build systems, CI, packaging for a long time

Agenda
● Introduction
● Path to Continuous Packaging
● How does it work
● Future

Introduction

Vision
Packaging is doing integration
State of the art integration is Continuous Integration

⇒ Continuous Packaging

Traditional packaging
● Wait for a release of the upstream project to package
● Test the new package
● Report any issue upstream
● Integrate patches to fix discovered issues

⇒ It’s big bang integration!
Big batches vs small batches!

Path to
Continuous Packaging

OpenStack/RDO
● Fast moving target:

○ Big number of projects: 275
○ Fast release cycle: 6 months
○ Fast moving projects: ~ 20K commits for the last cycle
○ Chicken and egg problem because the installers require up-to-date

packages to work

● Solution used in RDO ⇒ DLRN:
○ Switch to a Continuous Integration mindset
○ Build a package on each upstream commit
○ Deliver a usable repository for all the built packages up to this

point
○ React only on failures (email or open a gerrit review)

● https://trunk.rdoproject.org/centos7/status_report.html

https://trunk.rdoproject.org/centos7/status_report.html

Fedora
● Experimental DLRN server
● Picked 2 fast moving targets to test the value:

a. systemd
b. ansible

● Upstream feedback:
a. ansible

■ Found multiple issues in unit tests and documentation build
■ Found a release issue

b. Systemd
■ No real feedback but had to adapt to the new build system

Timeline details
http://38.145.33.116/dlrn/report.html

http://38.145.33.116/dlrn/report.html

Summary view
http://38.145.33.116/dlrn/status_report.html

http://38.145.33.116/dlrn/status_report.html

How does it work

How does it work?
Configuration files:
● INI file to describe the DLRN server settings
● mock config file
● YAML file to describe the git repositories

Steps:
● DLRN fetches git repositories for upstream and dist-git
● DLRN builds a package using mock on every commit
● On successful build and install a repository is created

with all the packages included
● Repositories are kept to allow to do bisections and

comparisons with past versions

INI file to configure DLRN
datadir=./rawhide-data
scriptsdir=./scripts
baseurl=http://38.145.33.116/dlrn/
distro=master
source=master
target=fedora-rawhide
smtpserver=localhost
reponame=delorean
templatedir=./dlrn/templates
maxretries=3
database_connection=sqlite:///rawhide.sqlite
fallback_to_master=1

Mock config file
config_opts['root'] = 'dlrn-fedora-x86_64'
config_opts['target_arch'] = 'x86_64'
config_opts['legal_host_arches'] = ('x86_64',)
config_opts['chroot_setup_cmd'] = 'install basesystem
rpm-build python2 git'
config_opts['dist'] = 'rawhide'
config_opts['extra_chroot_dirs'] = ['/run/lock',]
config_opts['releasever'] = '27'
...

YAMl file to describe the projects and packages
releases:
- name: rawhide
 branch: master
 repos:
 - name: fc27
 distrepos:
 - name: Fedora Rawhide
 url: https://mirrors.fedoraproject.org/metalink?repo=fedora-rawhide&arch=x86_64
package-configs:
 pkgconf:
 maintainers:
 - flepied@redhat.com
 - yguenane@redhat.com
package-default:
 name: "%(project)s"
 upstream: https://github.com/%(project)s/%(project)s
 master-distgit: file:///home/fedora/git/%(project)s
packages:
- project: systemd
 conf: pkgconf
 distro-branch: rpm-master
- project: ansible
 conf: pkgconf
 distro-branch: rpm-devel
 source-branch: devel

Packaging flow in DLRN
For each project to build:

1. Extract the upstream repo under <datadir>/<project>
2. Extract the dist-git repo under <datadir>/<project>_distro
3. Switch to the git target commits for upstream and dist-git
4. Create a tar ball like it would be done for a release
5. Subtitute tar ball name and version into the spec file
6. Create an src.rpm
7. Build and install using mock
8. On success create the metadata for the rpm repository
9. On the first failure send an email to the packagers

Organization on disk
<datadir>/<project>/
<datadir>/<project>_distro/
<datadir>/repos/<1-2>/<3-4>/<sha1>/rpmbuild.log
<datadir>/repos/<1-2>/<3-4>/<sha1>/*.rpm
<datadir>/repos/<1-2>/<3-4>/<sha1>/repodata/

Optimization
If your server cannot keep up with the changes, you can
build only the head of the branch on each project
(--head-only option).

Then in case of an error, to detect the commit that caused
it just use the git bisect helper:

./scripts/bisect.sh <conf file> <package> <good sha1> <bad sha1>

Future

Next steps
● Gather feedback from the Fedora community
● Put an official server in place
● Involve the official packagers and add new packages
● Use the dist-git pagure server to host the development

branches to allow easy collaboration
● Create a plugin for modulemd files
● Connect the Fedora CI system to consume these

repositories

Even shorter feedback loop
● Build packages on PR and test them

2 ways to do it:

1. Add a webhook to build on each proposed change
2. Process all available proposed changes in batch mode

filtering them to diminish the number

Conclusion

Summary
Continuous packaging

● aligns development and packaging cycles
● reduces the number of patches to carry
● spreads the load to fix issues
● reduces time to have a new version of a package in Fedora

Call for action

Let’s put Continuous Packaging
in place in Fedora!

Questions?

Contact

flepied@redhat.com
IRC: flepied

mailto:flepied@redhat.com

